Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials
نویسندگان
چکیده
Microspheres with high sphericity exhibit unique functionalities. In particular, their high symmetry makes them excellent omnidirectional optical resonators. As such perfect micrometre-sized spheres are known to be formed by surface tension, melt cooling is a popular method for fabricating microspheres. However, it is extremely difficult to produce crystalline microspheres using this method because their surfaces are normally faceted. Only microspheres of polymers, glass, or ceramics have been available, while single-crystalline microspheres, which should be useful in optical applications, have been awaiting successful production. Here we report the fabrication of single-crystalline semiconductor microspheres that have surfaces with atomic-level smoothness. These microspheres were formed by performing laser ablation in superfluid helium to create and moderately cool a melt of the anisotropic semiconductor material. This novel method provides cooling conditions that are exceptionally suited for the fabrication of single-crystalline microspheres. This finding opens a pathway for studying the hidden mechanism of anisotropy-free crystal growth and its applications.
منابع مشابه
Fabrication and Characterization of Nanostructure Functionally Graded Ni-P Electroless Coating
In this research, novel functionally graded Ni-P coating was deposited with electroless process. The content of phosphorus was controlled to change gradual through the thickness of the coating. During the plating, bath temperature and pH were changed at specified intervals to obtain functionally graded structure. To compare the properties of functionally graded coating with Ni-P single-layer co...
متن کاملMesoporous single-crystalline V2O5 nanorods assembled into hollow microspheres as cathode materials for high-rate and long-life lithium-ion batteries.
Mesoporous single-crystalline V2O5 nanorods assembled into novel hollow microspheres have been synthesized as cathode materials for lithium-ion batteries by a simple solvothermal treatment of NH4VO3 and ethylene glycol with subsequent annealing in air at 400 °C, which delivered a very high reversible capacity of 145.8 mA h g(-1) at 2.5-4.0 V (vs. theoretical value: 147 mA h g(-1)) with much imp...
متن کاملMonodisperse magnetic single-crystal ferrite microspheres.
It has been thought that many novel properties and potential applications would emerge from monodisperse materials with small dimensions. Therefore, the synthesis of monodisperse nanoparticles has been intensively pursued for their technological and fundamental scientific importance. The synthesis of nanostructured magnetic materials has become a particularly important area of research and is a...
متن کاملInfluence of annealing on anisotropic crystalline structure of HDPE cast films
High density polyethylene (HDPE) films were produced using cast film extrusion process with different draw ratios, ranging from 16.9 to 148.8. Morphology, crystallinty and orientation state of crystalline and amorphous phases of the cast films were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and polarized Fourier transform infrared spectroscopy...
متن کاملRadially oriented mesoporous TiO2 microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices
Highly crystalline mesoporous materials with oriented configurations are in demand for high-performance energy conversion devices. We report a simple evaporation-driven oriented assembly method to synthesize three-dimensional open mesoporous TiO2 microspheres with a diameter of ~800 nm, well-controlled radially oriented hexagonal mesochannels, and crystalline anatase walls. The mesoporous TiO2 ...
متن کامل